Theoretical Explanations of the Optical and EPR Spectra for Tetragonal Yb³⁺ Center in KMgF₃ Crystal

Hui-Ning Dong^{a,b} and Shao-Yi Wu^{b,c}

^a Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

^b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China ^c Department of Applied Physics, University of Electronic Science and Technology of China,

Chengdu 610054, P. R. China

of ¹⁷¹Yb³⁺ and ¹⁷³Yb³⁺ in KMgF₃ crystal are calculated from the two-order perturbation formulae. In these formulae, the contribution of the covalence effects, the admixture between J = 7/2 and J = 5/2 states as well as the second-order perturbation are included. The needed crystal parameters are obtained from optical spectra. The calculated results agree reasonably with the observed values.

Key words: Electron Paramagnetic Resonance; Crystal-field Theory; Yb³⁺; KMgF₃.

In this paper, the EPR g factors g_{\parallel} and g_{\perp} of Yb³⁺ and hyperfine structure constants A_{\parallel} and A_{\perp}

Reprint requests to Dr. H.-N. D.; E-mail: donghn@163.com Z. Naturforsch. **59a**, 780 – 782 (2004); received July 4, 2004